C. Albornoz, G. Alonso, M. Andrenkov, P. Angara, A. Asadi, A. Ballon, S. Bapat, L. Botelho, I. De Vlugt, O. Di Matteo, P. Downing, P. Finlay, A. Fumagalli, A. Gardhouse, J. Geoffrion, N. Girard, A. Hayes, J. Izaac, R. Janik, T. Kalajdzievski, A. Kanwar Singh, A. Khomchenko, N. Killoran, I. Kurečić, O. Landon-Cardinal, A. Martin, D. Nino, A. Otto, C. Pere, J. Pickering, K. Renaud, J. Soni, D. Wakeham, L. Young. PennyLane Codebook. 2024. https://
pennylane .ai /codebook
Resources¶
- Check out {Link: Pennylane Cookbook https://
pennylane .ai /codebook /learning -paths}! - Check out {Link: Discover new ideas faster.
https://
pennylane .ai/}![1][2][3] - Check out {Link: Papers With Code https://
portal .paperswithcode .com/}! - Check out {Link: Math for Machine Learning https://
github .com /Ryota -Kawamura /Mathematics -for -Machine -Learning -and -Data -Science -Specialization /tree /main/}! - Check out {Link: Hugging Face https://
huggingface .co/}! - Check out {Link: How to contribute Open Source project https://
docs .github .com /en /get -started /exploring -projects -on -github /contributing -to -a -project }! - Check out {Link: NotebookLM https://
notebooklm .google .com/}! - Check out {Link: IBM Quantum Learning https://
learning .quantum .ibm .com/}! - Check out {Link: dask-python libray https://
www .dask .org/}!