Skip to article frontmatterSkip to article content

Roadmap to Hybrid Quantum Physics-Informed Neural Networks (HQPINNs)

This roadmap integrates quantum computing, deep learning, and physics-informed modeling, tailored for theoretical physics and computational science researchers.


📘 Phase 1: Mathematical & Physical Foundations

✅ Topics

📚 Resources


🧠 Phase 2: Deep Learning & PINNs

✅ Topics

📚 Resources


⚛️ Phase 3: Quantum Computing Foundations

✅ Topics

📚 Resources


🧩 Phase 4: Hybrid Quantum-Classical PINNs

✅ Topics

📚 Tools

📚 Papers


🧪 Phase 5: Applications & Projects

🧠 Project Ideas

📚 Tools


🚀 Phase 6: Publication & Contribution

✅ Goals


C. Albornoz, G. Alonso, M. Andrenkov, P. Angara, A. Asadi, A. Ballon, S. Bapat, L. Botelho, I. De Vlugt, O. Di Matteo, P. Downing, P. Finlay, A. Fumagalli, A. Gardhouse, J. Geoffrion, N. Girard, A. Hayes, J. Izaac, R. Janik, T. Kalajdzievski, A. Kanwar Singh, A. Khomchenko, N. Killoran, I. Kurečić, O. Landon-Cardinal, A. Martin, D. Nino, A. Otto, C. Pere, J. Pickering, K. Renaud, J. Soni, D. Wakeham, L. Young. PennyLane Codebook. 2024. https://pennylane.ai/codebook