Skip to article frontmatterSkip to article content
e-book

Internship - Data Science - Gradtwin

A complete internship documentation

Executable Books

📊 Mathematics for Data Science and Machine Learning

🧠 Table of Contents


1. Linear Algebra

Topics:

Resources:


2. Calculus

Topics:

Resources:


3. Probability and Statistics

Topics:

Resources:


4. Optimization

Topics:

Resources:


5. Information Theory

Topics:

Resources:


6. Discrete Mathematics

Topics:

Resources:


7. Numerical Methods

Topics:

Resources:


8. Graph Theory

Topics:

Resources:


9. Mathematical Foundations of ML

Topics:

Resources:


10. Mathematics with Python

Core Libraries:

Topics + Code Examples:

🔹 Linear Algebra

import numpy as np

A = np.array([[1, 2], [3, 4]])
eigvals, eigvecs = np.linalg.eig(A)

🔹 Calculus (Symbolic)

from sympy import symbols, diff

x = symbols('x')
f = x**2 + 3*x
df = diff(f, x)

🔹 Probability & Stats

import scipy.stats as stats

mean = 0
std = 1
prob = stats.norm.cdf(1.96, loc=mean, scale=std)

🔹 Optimization

from scipy.optimize import minimize

f = lambda x: x**2 + 3*x + 2
res = minimize(f, x0=0)

🔹 Plotting

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-10, 10, 100)
y = x**2
plt.plot(x, y)
plt.title("y = x^2")
plt.show()

11. Resources and Roadmaps

📚 Books

🎓 Courses

🧾 Cheat Sheets


Connect with Me