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Department of Signal Theory & Communications,
Universidad Carlos III de Madrid.

spvieites@tsc.uc3m.es

July 9, 2020



Introduction State-space Model Model Inference Multi-scale nested filters Results Conclusions

Introduction

We aim at tracking homogeneous multi-scale systems. They are of broad
interest since they are found in many fields of science (biology, fluid dynamics,
chemistry...).
The goal is to estimate the time-evolution of a system governed by

• processes with different time-scales,

• that may be described by diverse laws,

• and with cross dependencies among them
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State of the Art Methods

We can find theoretically-guaranteed solutions for systems with unknown
static parameters and dynamic state variables: a multi-scale problem with only
two time scales:

• Sequential Monte Carlo square (SMC2) [Chopin et al., 2011] or
particle Markov chain Monte Carlo (PMCMC) [Andrieu et al., 2010]
aim at computing the joint posterior probability distribution of all the
unknown variables and parameters of the system. Unfortunately, they are
batch techniques.

• Nested particle filters (NPFs) [Crisan et al., 2018] is a scheme with two
intertwined layers of Monte Carlo methods that approximates the same
distribution but in a recursive way. Then, it is better suited for long
sequences of observations but the computational cost is prohibitive.

• Nested hybrid filters (NHFs) [S. Pérez-Vieites, 2017] introduce
Gaussian filtering techniques in the second layer of the algorithm,
reducing considerably the computational cost.
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State-space Model

We are interested in systems described by multidimensional stochastic
differential equations (SDEs):

dx = fx(x ,θ)dt + gx(z ,θ)dt + σxdv , (1)

dz = fz(x ,θ)dt + gz(z ,θ)dt + σzdw , (2)

where:

• t denotes time.

• x(t) ∈ Rdx are the slow states of the system.

• z(t) ∈ Rdz are the fast states of the system.

• θ ∈ Rdθ are fixed vector of unknown parameters.

• fx , fz , gx and gz are possibly non-linear functions.

• σx , σz > 0 are known scale parameters that control the intensity of
stochastic perturbations.

• v(t), w(t) are vectors of independent standard Wiener processes with
dimension dx and dz .
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Macro-micro Solver

In order to handle both time scales we apply a macro-micro solver
[Weinan et al., 2005]. We use different integration steps: ∆z for z and
∆x ≫ ∆z for x :

xn = xn−1 +∆x(fx(xn−1,θ) + gx(z̄n,θ)) +
√

∆xσxv n, (3)

zk = zk−1 +∆z(fz(x ⌊
k−1
h

⌋
,θ) + gz(zk−1,θ)) +

√
∆xσxw k , (4)

where

• n ∈ N denotes discrete time in the time scale of x (xn ≃ x(n∆x)),

• k ∈ N denotes discrete time in the time scale of z (zk ≃ z(k∆z)),

• h = ∆x
∆z

is the ratio between the two time scales and

z̄n =
1

h

hn

∑
i=h(n−1)+1

z i . (5)
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Macro-micro Solver
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Model Inference

We aim at approximating the joint posterior probability density function (pdf)
p(θ, x0∶n, zhn∣y 1∶n). Using the chain rule, we can factorize this pdf as

p(zhn, xn,θ∣y 1∶n) = p(zhn∣x0∶n, y 1∶n,θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

3rd layer

p(x0∶n∣y 1∶n,θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2nd layer

p(θ∣y 1∶n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1st layer

→ Each of these pdf’s can be handled in a different layer of computation.
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General methodology

1st layer
p(θ∣y 1∶n) ∝ p(y n∣θ, y 1∶n−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
likelihood of θ

p(θ∣y 1∶n−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

posterior pdf at n−1

2nd layer

p(y n∣θ, y 1∶n−1) = ∫

likelihood of θ and x0∶n
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p(y n∣x0∶n, y 1∶n−1,θ) p(x0∶n∣y 1∶n−1,θ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
joint predictive pdf of x0∶n

dx0∶n

3rd layer

p(y n∣x0∶n, y 1∶n−1,θ) = ∫

likelihood of θ, xn and zhn
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p(y n∣zhn, xn,θ)

×p(zhn∣x0∶n, y 1∶n−1,θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

predictive pdf of zhn

dzhn
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Multi-scale nested filters: a particular implementation

1st layerSMC (N samples)

- Jittering: θ̄
i
n ∼ κ

θi
n−1

N , 1 ≤ i ≤ N Ð→ p(θ∣y 1∶n−1)

- Likelihood of θ: p(y n∣θ, y 1∶n−1) Ð→ weights

- Resampling: {θi
n,{x i,j

n ,{z
i,j,l
hn }}} Ð→ p(θ∣y 1∶n)

p(zhn, xn,θ∣y 1∶n)

2nd layerSMC (J samples)

- Prediction: x̄ i,j
n ,1 ≤ j ≤ J Ð→ p(x0∶n∣y 1∶n−1, θ̄

i
n)

- Likelihood of θ and x0∶n: p(y n∣x̄
i,j
0∶n, y 1∶n−1, θ̄

i
n) Ð→ weights

- Resampling: {x i,j
n ,{z

i,j,l
hn }} Ð→ p(x0∶n∣y 1∶n, θ̄

i
n)

3rd layerUKF (L + 1 sigma-points)

- Prediction:z̃ i,j,l
hn ,0 ≤ l ≤ LÐ→ p(zhn∣x i,j

0∶n−1, y 1∶n−1, θ̄
i
n)

3rd layerUKF (L + 1 sigma-points)

- Likelihood of θ, x0∶n and zhn: p(y n∣z̃
i,j,l
hn , x̄

i,j
n , θ̄

i
n)

- Update: p(zhn∣x̄ i,j
n , x

i,j
0∶n−1, y 1∶n, θ̄

i
n)
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Numerical results

We consider a stochastic two-scale Lorenz 96 model that is described, in
continuous time, by the SDEs

dxj =[ − xj−1(xj−2 − xj+1) − xj + F −
HC

B

Lj−1

∑
l=(j−1)L

zl]dt + σxdvj , (6)

dzl =[ − CBzl+1(zl+2 − zl−1) − Czl +
CF

B
+
HC

B
x⌊(l−1)L⌋]dt + σzdwl , (7)

where

• the slow variables, x , are a dx -dimensional vector,

• the fast variables, z , are dz -dimensional (dz > dx) and

• we assume static parameters H and B are known, while we need to
estimate θ = [F ,C]⊺.
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Approximate posterior density functions
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Conclusions

• We have introduced a new recursive methodology for tracking the time
evolution and evaluate any static parameters of homogeneous multi-scale
systems.

• It is a nested multilayered structure that allows different computation
schemes at each layer. Specifically, we have explored the use of sequential
Monte Carlo in both first and second layers of the filter, and in the third
layer, Gaussian filters (UKF).

• We have analyzed a dynamical system of 3 time-scales (static parameters,
slow dynamic state variables and fast dynamic state variables), showing
the average performance of the method in terms of estimation errors.
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